Minggu, 20 Maret 2016

TUGAS TERSTRUKTUR DISAKARIDA

Berapakah kandungan amilosa dan amilopektin pada jagung, beras, sagu,gandum,ubi kayu dan kentang .?
jawab :

JAGUNG

Kandungan Pati

Komponen utama jagung adalah pati, yaitu sekitar 70% dari bobot biji. Komponen karbohidrat lain adalah gula sederhana, yaitu glukosa, sukrosa dan fruktosa, 1-3% dari bobot biji. Pati terdiri atas dua jenis polimer glukosa, yaitu amilosa dan amilopektin. 


Komposisi amilosa dan amilopektin di dalam biji jagung terkendali secara genetik. Secara umum, baik jagung yang mempunyai tipe endosperma gigi kuda (dent) maupun mutiara (flint), mengandung amilosa 25-30% dan amilopektin 70-75%. Namun jagung pulut (waxy maize) dapat mengandung 100% amilopektin. Suatu mutan endosperma yang disebut amylose-extender (ae) dapat menginduksi peningkatan nisbah amilosa sampai 50% atau lebih. Gen lain, baik sendiri maupun kombinasi, juga dapat memodifikasi nisbah amilosa dan amilopektin dalam pati jagung.

Amilopektin berpengaruh terhadap sifat sensoris jagung, terutama tekstur dan rasa. Pada prinsipnya, semakin tinggi kandungan amilopektin, tekstur dan rasa jagung semakin lunak, pulen, dan enak. Komposisi tersebut juga berpengaruh terhadap sifat amilografinya. Kandungan amilosa beberapa varietas lokal dan unggul nasional dapat dilihat pada Tabel 3 (Suarni 2005).

BERAS



Bagian terbesar beras didominasi oleh pati (sekitar 80-85%). Beras juga mengandung protein, vitamin (terutama pada bagian aleuron), mineral, danair. Pati beras dapat digolongkan menjadi dua kelompok yaitu amilosa pati dengan struktur tidak bercabang dan amilopektin dengan struktur bercabang. Perbandingan komposisi kedua golongan pati ini sangat menentukan warna (transparan atau tidak) dan tekstur nasi (lengket, lunak, keras, atau pera). Ketan hampir sepenuhnya didominasi oleh amilopektin sehingga sangat lekat, sementara beras pera memiliki kandungan amilosa melebihi 20% yang membuat butiran nasinya terpencar-pencar (tidak berlekatan) dan keras.

Berdasarkan kandungan amilosanya, beras dibagi menjadi empat golongan, yaitu ketan (2-9 persen), beras beramilosa rendah (9-20 persen), beras beramilosa sedang (20-25 persen) dan beras beramilosa tinggi (25-33 persen). Secara umum, beras memiliki bentuk polygonal bulat dengan ukuran bulat 3-8 mikron, dan suhu gelatinisasi 68-78oC.


Beras ketan dan beras biasa (non ketan) berbeda kandungan amylosa dan amylopektinnya. Amylosa berantai lurus dengan ikatan 1-4 alfa-glikosidik, sedangkan amylopektin berantai cabang dengan ikatan 1-4 alfa dan 1-6 beta glikosidik pada percabangannya dengan panjang rantai 20 – 26 satuan glukosa. Ketan (atau beras ketan), berwarna putih, tidak transparan, seluruh atau hampir seluruh patinya merupakan amilopektin.

Perbandingan antara amilosa dan amilopektin ini dijadikan dasar atau merupakan factor tunggal dalam menentukan mutu rasa dan tekstur nasi. Kandungan amilosa tersebut berkorelasi positif dengan tingkat kelemahan, kelengketan, warna dan kilap. Semakin tinggi kadar amilosa volume nasi yang diperoleh makin besar tanpa kecenderungan mengempes, hal ini dikarenakan amilosa mempunyai kemampuan retrogadasi yang lebih besar. Beras dengan kandungan amilosa tinggi menghasilkan nasi pera dan kering, sebaliknya beras dengan kandungan amilosa rendah menghasilkan nasi yang lengket dan lunak. Semakin tinggi kandungan atau kadar amylose yang terkandung, maka akan semakin berkurang keenakan rasanya karena semakin tinggi kadar amylose yang terkandung, maka struktur nasi yang diperoleh akan semakin keras dan mempunyai struktur pisah-pisah.

SAGU


Pati sagu tersusun atas dua fraksi penting yaitu amilosa yang merupakan fraksi linier dan amilopektin yang merupakan fraksi cabang. Fraksi terlarutnya adalah amilosa dengan kadar ±27% dengan struktur linier, sedangkan fraksi tidak terlarutnya adalah amilopektin dengan kadar ±73% dengan struktur bercabang (Yazid, et.al, 2006). Berdasarkan kandungan amilosanya, pati dibagi menjadi empat golongan, yaitu : Pati dengan kadar amilosanya tinggi (25 – 33 %); Pati dengan kadar amilosa menengah (20 – 25 %); Pati dengan kadar amilosa rendah (9 – 20 %); dan pati dengan kadar amilosa sangat rendah (< 9 %) (Winarno,2002).


Pati sagu yang ada di Indonesia umumnya merupakan pati sagu yang diperoleh melalui ekstraksi secara tradisional. Proses ekstraksi yang dilakukan secara tradisional hanya memisahkan pati berdasarkan kemampuannya untuk tersuspensi di dalam air kemudian mengendapkan pati yang tersuspensi (Herawati, 2009).  Keberadaan komponen selain pati pada pati sagu menjadi bagian dari penentu mutu pati sagu.

Proses ekstraksi pati sagu yang dilakukan dengan baik akan menghasilkan pati dengan tingkat kemurnian yang tinggi yaitu dengan kandungan abu, lemak, protein dan serat kasar yang serendah mungkin. Adanya variasi metode dan peralatan yang digunakan dalam ekstraksi pati sagu di setiap daerah menyebabkan adanya perbedaan tingkat kemurnian sagu yang diperoleh.

Sagu memiliki kandungan karbohidrat, protein, lemak, kalsium, dan zat besi yang tinggi. Dengan kandungan tersebut, sagu berpotensi dijadikan sebagai bahan baku sirup glukosa yang dapat meningkatkan nilai tambah sagu. Pati sagu mengandung 27% amilosa dan 73% amilopektin. Perbandingan komposisi kadar amilosa dan amilopektin akan mempengaruhi sifat pati. Semakin tinggi kadar amilosa maka pati bersifat kurang kering, kurang lekat dan mudah menyerap air (higroskopis). Komposisi kimia sagu asal Indonesia dapat dilihat pada tabel berikut :

Sumber : Purwani dkk. (2006)

GANDUM


Gandum (Triticum spp.) merupakan tanaman serealia dari suku padi-padian yang kaya akan karbohidrat. Selain sebagai bahan makanan, gandum dapat pula diolah sebagai bahan-bahan industri yang penting, baik bentuk karbohidrat utamanya atau komponen lainnya.

Granula pati gandum berbentuk elips dengan ukuran granula 2-35 µm. Kandungan amilosa dalam pati gandum adalah 25% sedangkan amilopektinnya sebesar 75%. Dalam produk makanan, amilopektin bersifat merangsang terjadinya proses mekar (puffing) dimana produk makan yang berasal dari pati yang kandungan amilopektinnya tinggi akan bersifat ringan, porus, garing dan renyah. Hal ini dikarenakan amilopektin memiliki sifat mudah mengembang dan membentuk koloid dalam air. Kebalikannya pati dengan kandungan amilosa tinggi, cenderung menghasilkan produk yang keras, pejal, karena proses mekarnya terjadi secara terbatas (Pudjihastuti, 2010). Oleh karena itulah tepung gandum utuh cocok digunakan untuk pembuatan roti dan kue karena pati gandum mengandung amilopektin yang tinggi yang sangat berpengaruh terhadap swelling properties (sifat mengembang pada pati).

Kadar amilosa pada gandum berhubungan dengan indeks glisemiknya dan daya cerna pati. Kandungan amilosa dalam gandum utuh yang cukup tinggi yaitu sebesar 25%, menyebabkan daya cerna pati serta indeks glisemik gandum yang rendah. Indeks glisemik gandum utuh adalah 55-69 (Foster dan Miler, 1995). Indeks glisemik dan daya cerna pati yang rendah menyebabkan proses pencernaan karbohidrat di dalam tubuh lamban karena karbohidrat tidak langsung dicerna menjadi gula darah, sehingga makanan olahan yang berasal dari gandum utuh sangat baik untuk penederita diabetes mellitus. 

UBI KAYU


Umbi akar singkong banyak mengandung glukosa dan dapat dimakan mentah. Dari umbi ini dapat pula dibuat tepung tapioka. Tapioka adalah pati yang diperoleh dari hasil ekstrak ubi kayu, dimana pati itu terdiri dari dua fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan yang tidak larut disebut amilopektin. Tepung tapioca mengandung 17 % amilosa dan 83 % amilopektin. Perbandingan amilosa dan amilopektin mempengaruhi sifat kelarutan dan derajat gelatinisasi pati.

Semakin kecil kandungan amilosa atau semakin tinggi kandungan amilopektinnya, maka pati cenderung menyerap air lebih banyak (Tjokroadikusumo, 1986). Gelatinisasi suhu berkisar antara 58,8oC-70oC. Pati yang kandungan amilopektinnya tinggi akan membentuk gel yang tidak kaku, sedangkan pati yang kandungan amilopektinnya rendah akan membentuk gel yang kaku. Pati jagung berbentuk bulat dengan ukuran granula patinya berkisar 5-25 mikron.



KENTANG



Kentang (Solanum Tuberosum) merupakan umbi dari bagian batang tanaman. Kentang merupakan tanaman berbentuk semak/herba. Secara kimia, umbi kentang banyak mengandung air. Pati yang dihasilkan memiliki sifat yang berbeda-beda tergantung dari jenis patinya. Kentang memiliki bentuk bulat telur pada granulanya, berukuran 15-100 mikron, dan suhu gelatinisasinya 58-66oC.


Kandungan amilum pada kentang adalah sekitar 59,7%. Bentuk dominan dari karbohidrat ini adalah patiBila digoreng, kentang hanya akan mengandung karbohidrat sebesar 27%. Sedangkan penyajian dalam bentuk direbus, akan memberikan karbohidrat yang lebih besar, yaitu sebesar 35%.

Jumat, 18 Maret 2016

DISAKARIDA DAN POLISAKARIDA

“DISAKARIDA”

Disakarida merupakan jenis karbohidrat yang banyak dikonsumsi oleh manusia di dalam kehidupan sehari-hari. Setiap molekul disakarida akan terbentuk dari gabungan 2 molekul monosakarida. Contoh disakarida yang umum digunakan dalam konsumsi sehari-hari adalah sukrosa yang terbentuk dari gabungan 1 molekul glukosa dan fruktosa dan juga laktosa yang terbentuk dari gabungan 1 molekul glukosa & galaktosa. Di dalam produk pangan, sukrosa merupakan pembentuk hampir 99% dari gula pasir atau gula meja (table sugar) yang biasa digunakan dalam konsumsi sehari-hari sedangkan laktosa merupakan karbohidrat yang banyak terdapat di dalam susu sapi dengan konsentrasi 6.8 gr / 100 ml. Salah satu contoh reaksi pembentukan disakarida adalah sebagai berikut :

C6H12O6 + C6H12O6                          C12H22O12 + H2O
(monosakarida)                                    (disakarida)

Dalam reaksi tersebut di atas terjadi pelepasan air. Beberapa jenis disakarida yang penting adalah laktosa, sukrosa, dan maltosa.



PENGERTIAN DISAKARIDA

Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida.

Sifat penciri suatu disakarida:
1.      Monomer gula penyusunnya dan stereo-konfigurasinya
2.      Karbon yang terlibat dalam membentuk ikatan
3.      Urutan unit monomernya, apabila terdiri dari monosakarida yang berbeda
4.      Konfigurasi anomerik–gugus OH pada C no. 1 dari setiap unit penyusunnya.

Seperti monosakarida, disakarida larut dalam air, rasa manis, dan disebut “gula”. Disakarida adalah salah satu dari empat kelompok kimia karbohidrat yang merupakan monosakarida, disakarida, oligosakarida dan polisakarida. Salah satu disakarida yang paling terkenal adalah ‘sukrosa’ dan banyak lainnya ditemukan di alam adalah ‘laktosa’ dan ‘maltosa’.

KLASIFIKASI DISAKARIDA

Ada dua jenis Disakarida.

1.      1. Disakarida yang mengalami Pengurangan : Dalam jenis disakarida ini, gula pereduksi adalah unit ‘hemiasetal’ bebas. Hemiasetal adalah senyawa yang berasal berturut-turut dari aldehid dan keton. Aldehida adalah senyawa organik. Gugus fungsi ini, dengan struktur R-CHO, terdiri dari pusat karbonil terikat pada hidrogen dan gugus R. -CHO disebut gugus aldehid atau formil. Banyak wewangian adalah aldehida. Keton juga senyawa organik dengan struktur RC (= O) R ‘di mana C = O adalah kelompok keton. Contoh disakarida dengan pengurangan ini adalah maltosa dan Selobiosa.

2.      2. Disakarida Non-pengurangan: Pada tipe ini, monosakarida memiliki satuan hemiasetal bebas. Contoh disakarida non-pengurangan adalah sukrosa dan Trehalosa

BERIKUT INI BEBERAPA DISAKARIDA YANG BANYAK TERDAPAT DI ALAM

1.      Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.


Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.
2.      Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.

Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.
Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.

Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.
3.      Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.


Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.


POLISAKARIDA
Polisakarida merupakan polimer monosakarida, mengandung banyak satuan monosakarida yang dihubungkan oleh ikatan glikosida. Hidrolisis lengkap dari polisakarida akan menghasilkan monosakarida. Glikogen dan amilum merupakan polimer glukosa. Berikut beberapa polisakarida terpenting.
1.Selulosa 

            Selulosa merupakan polisakarida yang banyak dijumpai dalam dinding sel pelindung seperti batang, dahan, daun dari tumbuh-tumbuhan. Selulosa merupakan polimer yang berantai panjang dan tidak bercabang. Suatu molekul tunggal selulosa merupakan polimer rantai lurus dari 1,4’-
β-D-glukosa. Hidrolisis selulosa dalam HCl 4% dalam air menghasilkan D-glukosa.



Dalam sistem pencernaan manusia terdapat enzim yang dapat memecahkan ikatan α-glikosida, tetapi tidak terdapat enzim untuk memecahkan ikatan β-glikosida yang terdapat dalam selulosa sehingga manusia tidak dapat mencerna selulosa. Dalam sistem pencernaan hewan herbivora terdapat beberapa bakteri yang memiliki enzim β-glikosida sehingga hewan jenis ini dapat menghidrolisis selulosa. Contoh hewan yang memiliki bakteri tersebut adalah rayap, sehingga dapat menjadikan kayu sebagai makanan utamanya. Selulosa sering digunakan dalam pembuatan plastik. Selulosa nitrat digunakan sebagai bahan peledak, campurannya dengan kamper menghasilkan lapisan film (seluloid).

2.Pati/Amilum
            Pati terbentuk lebih dari 500 molekul monosakarida. Merupakan polimer dari glukosa. Pati terdapat dalam umbi-umbian sebagai cadangan makanan pada tumbuhan. Jika dilarutkan dalam air panas, pati dapat dipisahkan menjadi dua fraksi utama, yaitu amilosa dan amilopektin. Perbedaan terletak pada bentuk rantai dan jumlah monomernya.

Amilosa adalah polimer linier dari α-D-glukosa yang dihubungkan dengan ikatan 1,4-α. Dalam satu molekul amilosa terdapat 250 satuan glukosa atau lebih. Amilosa membentuk senyawa kompleks berwarna biru dengan iodium. Warna ini merupakan uji untuk mengidentifikasi adanya pati.

Molekul amilopektin lebih besar dari amilosa. Strukturnya bercabang. Rantai utama mengandung α-D-glukosa yang dihubungkan oleh ikatan 1,4'-α. Tiap molekul glukosa pada titik percabangan dihubungkan oleh ikatan 1,6'-α.


Hidrolisis lengkap pati akan menghasilkan D-glukosa. Hidrolisis dengan enzim tertentu akan menghasilkan dextrin dan maltosa.

PERAN DISAKARIDA DALAM KESEHATAN MANUSIA

 Terlalu banyak disakarida menyebabkan lonjakan gula darah dan menyebabkan penyakit yang disebut “Diabetes”. Namun, beberapa jenis disakarida yang digunakan karena mereka menyebabkan lonjakan gula darah lebih sedikit dan lebih disukai oleh pasien ‘diabetes tipe 2 ‘ . mis, Maltosa. Sementara molekul glukosa masih ada, mereka cenderung menciptakan lonjakan kurang dari kadar gula darah dan diserap ke dalam tubuh lebih mudah daripada gula meja biasa. Tapi, terlalu banyak dari disakarida yang lebih aman ini dapat menyebabkan diare.

PERMASALAHAN :

Berdasarkan kelarutannya dalam air, mana kah yang lebih larut dalam air disakarida atau polisakarida.? serta berikan contoh produk yang mengandung jenis - jenis disakarida dalam kehidupan sehari hari !

Minggu, 13 Maret 2016

TUGAS TERSTRUKTUR 3

TUGAS TERSTRUKTUR SENYAWA ORGANOLOGAM

1. Buatlah reaksi pembentukan organolitium !

Jawab :


Litium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Li dan nomor atom 3. Unsur ini termasuk dalam logam alkali dengan warna putih perak. Dalam keadaan standar, litium adalah logampaling ringan sekaligus unsur dengan densitas (massa jenis) paling kecil. Seperti logam-logam alkali lainnya, litium sangat reaktif dan terkorosi dengan cepat dan menjadi hitam di udara yang lembap. Oleh karena itu, logam litium biasanya disimpan dalam wadah yang diisi minyak anhidrat.



Organolithium addition

Reaksi-reaksi ini jelas reaksi substitusi, tetapi mereka tidak dapat diklasifikasikan sebagai substitusi nukleofilik, seperti reaksi awal dari alkil halida. Karena atom karbon fungsional telah berkurang, polaritas kelompok fungsional yang dihasilkan terbalik (suatu karbon awalnya elektrofilik menjadi nukleofilik). Perubahan ini, yang ditunjukkan di bawah, membuat alkil litium dan Grignard reagen reaktan yang unik dan berguna dalam sintesis.




Reaksi dari organolitium dan reagen Grignard mencerminkan karakter nukleofilik (dan dasar) dari karbon fungsional dalam senyawa ini. Banyak contoh reaksi tersebut akan ditemui dalam diskusi masa depan, dan lima contoh sederhana ditunjukkan di bawah ini. Persamaan pertama dan ketiga menunjukkan sifat sangat dasar dari senyawa ini, yang ikatan dengan cepat ke proton asam lemah air dan metil alkohol (berwarna biru). Karbon nukleofilik reagen ini juga obligasi mudah dengan elektrofil seperti yodium (persamaan kedua) dan karbon dioksida (persamaan kelima). Polaritas ikatan karbon-oksigen dari CO2 membuat atom karbon elektrofilik, yang ditunjukkan oleh rumus di kotak berbayang, sehingga karbon nukleofilik obligasi pereaksi Grignard ke situs ini. Seperti disebutkan di atas, solusi reagen ini juga harus dilindungi dari oksigen, karena peroksida terbentuk (persamaan 4).




Gilman Reagents

When lithium dialkylcopper compounds, also known as Gilman reagents (after Henry Gilman), are converted by alkyl bromides, chlorides, or iodides, the cross-coupling products are obtained in good yields. Alkyl fluorides do not react with Gilman reagents. Gilman reagents can be synthesized through the treatment of the corresponding alkyllithium compound with copper(I) iodide in diethyl ether.
Fig.1
Syn­the­sis of (CH3)2CuLi (a Gilman reagent).



2. Bagaimanakah cara terbentuknya suatu karbokation, sehingga rantai atom karbon bertambah panjang 4x (dengan alkil halida, dengan suatu ester, dengan suatu erpoksida dan dengan suatu keton) !

Jawab :


- dengan alkil halida



membuat alkil litium dan Grignard reagen reaktan yang unik dan berguna dalam sintesis :




atau


- dengan suatu ester




- dengan suatu epoksida
      contoh 1


       contoh 2


- dengan suatu keton


Reaksi dengan keton akan menghasilkan Alkohol



Contoh :